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Abstract

How are natural symbol systems best understood? Traditional ‘‘symbolic’’ approaches seek to
understand cognition by analogy to highly structured, prescriptive computer programs. Here, we
describe some problems the traditional computational metaphor inevitably leads to, and a very
different approach to computation (Ramscar, Yarlett, Dye, Denny, & Thorpe, 2010; Turing, 1950)
that allows these problems to be avoided. The way we conceive of natural symbol systems depends
to a large degree on the computational metaphors we use to understand them, and machine learning
suggests an understanding of symbolic thought that is very different to traditional views (Hummel,
2010). The empirical question then is: Which metaphor is best?
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In considering the functions of the mind or the brain, we find certain operations which we
can explain in purely mechanical terms. This we say does not correspond to the real
mind: It is a sort of [onion] skin which we must strip off if we are to find the real mind.
But then in what remains we find a further skin to be stripped off, and so on. Proceeding
in this way do we ever come to the ‘‘real’” mind, or do we eventually come to the skin
which has nothing in it? In the latter case the whole mind is mechanical

— Turing, 1950, pp. 454455

The model of symbolic thought asserted by Hummel (2010) assumes that symbols are
understood by reference to propositions (Fodor, 1981). This account of meaning is incom-
patible, in principle, with the constraints imposed by Feature-Label-Order on symbolic
learning (Ramscar, Yarlett, Dye, Denny, & Thorpe, 2010). FLO constraints are a formal
consequence of a kind of learning (which is basic to humans) and a kind of natural symbol
(the kind basic to language), given elementary principles of computation and coding. What
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is worrying about Hummel’s response to our formalization of these constraints is that it
suggests that while we may be right about symbols, he may be right about how they are
understood.

We are optimistic that this is not the case: The logic of FLO does not rule out meaning; it
simply recasts understanding as a probabilistic, predictive process. Rather, we suspect
Hummel’s confusion is tied up with an expectation that the mind will conform to his
particular model. In this, he is not alone. Belief in the ‘‘computational metaphor of mind’’
(singular) is widespread. We believe in a computational metaphor, too. But like Turing
(1950), we think there is more than one way of conceiving of computation, and more than
one computational metaphor.

In what follows, we briefly describe some problems with the picture of symbolic thought
painted by Hummel. We then describe the approach to computation embodied in our own
work, and the very different metaphor of mind and language it gives rise to. Our goal is not
to advocate a model of computation for its own sake; it is to better understand the workings
of natural symbol systems (i.e., natural language), the nature of which is still very much an
open question.

Critically, we think that mapping natural language expressions onto the promiscuous rela-
tions Hummel describes is harder than he does. Far harder: We think you cannot do it. Con-
sider the relation, love (Hummel, 2010): It does not limit itself to relating George to Mary,
and Sally to Mary: One might reasonably say George loves a good argument, or even, a
good argument loves George. However, ‘‘loves’” means something else in these last two
examples. It denotes different relationships. This poses a problem: Make love too promiscu-
ous (Hummel & Holyoak, 1997), and it treats all loves relations identically. Hummel and
Holyoak argue this is good, because it captures the ‘‘similarities’” between love applied to
arguments and people. However, it also ignores all of the differences. If a promiscuous love
relation treats Mary loves George and George loves arguments identically, and if people’s
use of these two loves is not semantically identical—as Hummel and Holyoak admit—then
two things follow: First, promiscuous relations fail to capture an essential feature of natural
symbol systems, because people use the same words to describe different relations, while
promiscuous relations do not. Second, as a consequence, promiscuous relational systems
and meaningful natural symbol systems are different things.

Usually, one of two moves is made at this point. The first relegates the problems we pose
about love to ‘‘pragmatics’’ (or performance) and avers that competence—whatever promis-
cuous relations can capture—is the thing to explain (Chomsky, 1965). However, if the
meanings of symbols are a matter of pragmatics, this begs the question of what promiscuous
relational systems actually add to our understanding of natural symbol systems.

Should we eschew the pragmatics option, we find ourselves with a bigger problem:
Explaining how promiscuous relations can express different senses of loves. The usual way
to do this is to assume that the different senses of loves refer to different ‘‘concepts.”” The
meaning of a word is represented by the concept WORD, which gets its meaning from
OTHER WORDS, which in turn get their meanings from YET MORE WORDS, until it
becomes WORDS ALL THE WAY DOWN (they are not words, of course, they are
CONCEPTS—hence the capitals—and though no-one knows how they solve these
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problems, people in this tradition seem happy enough crossing their fingers and hoping that
someday, someone will; Hummel & Holyoak, 1997; Fodor, 1998; Chomsky, 2000; Doumas
et al., 2006). Once this leap of faith is made, shades of meaning can be coded as different,
less promiscuous relations: LOVES-1 (Mary and George), LOVES-2 (arguments), LOVES-
n, etc., and as long as one gets all this coded structure exactly right, you might get a model
that appears sensitive to the different shades of meaning for loves.

The problem with this is that everything in the model’s worldview has to be coded by
hand, meaning that we can discover little about meaningful natural symbol systems from
this ‘‘turtles all the way down’’ (see Hawking, 1988) approach to computation. This brings
us to the heart of the matter: Many scientists working in the cognitive tradition believe that
what we described so far is the limit of what computation—and modeling—can be: You
take a computer and an algorithm, hand-code some representations ‘‘just so,”” and—voi-
la!—you have a cognitive simulation. (Just do not push the idea of ‘‘cognitive’” or ‘‘simu-
late’’ too hard.)

Given that theorizing about the mind is dominated by this computational metaphor, it is
no surprise that cognitive science is in turn dominated by theories that assume the mind must
come with many of its representations built in (while being vague to the point of opacity
when it comes to specifying the computational content of these representations; Scholz
& Pullum, 2006).

So much for the bad news. The good news is that hand-coded systems are not the be all
and end all of computation and computational modeling. There is an alternative, first
described by Turing (1950) in his remarkable paper, Computing machinery and intelligence
(which also gave us the ‘‘Turing Test’’). Turing argued that there was little chance of
computers simulating human intelligence if every conceivable eventuality had to be worked
out in advance by a programmer (i.e., hand coded). A better strategy, Turing suggested, lay
in learning machines: ‘‘Instead of trying to produce a programme to simulate the adult
mind, why not rather try to produce one which simulates the child’s?’’ (Turing, 1950, p. 456).

We can illustrate how learning machines work by considering the representations
employed in the FLO simulations. One might reasonably ask, ‘‘weren’t they hand coded
too?’” The answer is, ‘‘not really.”” While we hand-structured the representations in the FLO
simulations to make them accessible as illustrations, there was nothing in that structure that
was not a straightforward reflection of the world. Because the world (the fribbles) and the
labels covaried systematically, any algorithm that learned from the distribution of the fribble
features and the distribution of error those features generated would have ended up with rep-
resentations informationally equivalent to those in our simulations—even if, for example,
the inputs to the FLO simulations had been vectors of pixel values from a digital camera.
Why? Because there was structure in the relationships between the labels and fribbles, and
because learning machines are able to discover that structure for themselves (Drucker,
Burges, Kaufman, Smola, & Vapnik, 1997; Galistel, 2003; Rescorla & Wagner, 1972).

Learning machines present a paradox: Presented on a scale small enough to comprehend
(our simulations), they appear unimpressive, and yet scaled up, they have revolutionized
modern life. As metaphors, they can revolutionize our understanding of the mind and
natural symbol systems.
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We can illustrate this rather bold claim by comparing a learning machine (a search
engine) to a classical symbolic program (a spreadsheet). Spreadsheets are rule governed:
They provide a user with a set of functions that have been coded in by their programmers.
Once a user has learned these functions, and the types of input symbols they are compatible
with, spreadsheets are semantically determinate: Tell a spreadsheet to add 1, 2, and 5, and 8
will invariably appear. Inadvertently type ‘‘q’’ instead of ‘‘1,”” and the program will fail
(“H#WTF%).

Spreadsheets typify the traditional symbolic approach to computation, and metaphori-
cally, they naturally give rise to the views of mind, symbols, and natural language described
by Hummel (2010).

Search engines engage users with a fundamentally different paradigm for computation.
While a spreadsheet’s power lies in the functions programmed into it, search engines offer
few obvious ‘‘functions.”’ Rather, their power comes from their ability to learn from the
masses of data distributed about the Web. Similarly, using search engines does not involve
memorizing rules from manuals; rather, users learn from experience the kind of things that
make good search terms. Search is semantically probabilistic for both the user and the
machine, and it is driven by expectation and optimization, not hard and fast rules. When
you enter a term into a search engine, no specific output is guaranteed. Type ‘‘michl rmscr,”’
for example, and you may still get a link to the author.

While spreadsheets place the burden of structuring information on the user (in return for
determinate output), search engines do the opposite: They discover structure for the
user—probabilistically. This fundamental contrast distinguishes between two different com-
putational paradigms, and two different computational metaphors of mind. It also lies at the
heart of our disagreement with Hummel: Because there is more than one computational met-
aphor of mind, it makes no sense to assume, as Hummel (2010) does, that whatever your
metaphor has, the mind has too. We are faced with the task of discovering which paradigm
provides the right metaphor for natural computation. This is an empirical matter. It cannot
be resolved by fiat, or through vague analogies to first- and second-order logics.

Turing (1950)—the father of classical symbolic computation—thought that learning
machines offered the best model for human intelligence. History supports this. Where com-
puters have to interact with humans and natural symbol systems (rather than vice versa),
learning machines have outperformed classic programming approaches. Consider the pro-
ceedings of the 1989 meeting of the Association for Computational Linguistics (Hirschberg,
1989): It is dominated by hand-coded, ‘‘symbolic’’ programs. Move forward to the present
(Lee & im Walde, 2009), and almost every system presented employs some form of learning
machine (in 1989, automatic speech recognition was in its infancy; 20 years later, one
despairs of ever reaching a human on business calls).

While our understanding of machine learning has grown in recent years, its theoretical
impact on our understanding of the nature of mind has been limited. Debate in cognitive
science has focused on the representation of symbolic thought (is it ‘‘symbolic’” or
‘‘subsymbolic?’’). Meanwhile, the nature of mental computation is largely taken for
granted. This needs remedy. The different computational paradigms we describe present
alternative, not complementary methods. (e.g., while it is good for a search engine to sug-
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gest ramscar given ‘‘rmscr,”’ it is not so good for a spreadsheet to sum ‘‘3,3,3,3,4”" to
““15”” because it expected ‘3’ rather than ‘4’ as the last digit).

Our analysis of FLO (Ramscar et al., 2010) arose out of the idea that the mind can be
modeled as a kind of learning machine. This computational-level assumption (Marr, 1982)
in turn led to formal, testable hypotheses and an account of symbolic thought very different
to the one Hummel assumes (see Levy, 2008; Jaeger, 2010, for similar approaches). FLO
does not constrain ‘‘the symbol grounding problem’’ (turtles all the way down) as Hummel
claims, because this ‘‘problem’” only exists under Hummel’s analysis, which assumes a
determinate relationship between symbols and their meanings, and which violates basic
principles of coding and computation. Our account tries to respect these principles, which is
why we favor a predictive, probabilistic model of communication.

Hummel’s approach leads inevitably to an impasse, and there appears to be no way
around it. Vague appeals to analogies between logics, learning, and symbols do not solve
this problem, and it is not clear how mixing different computational paradigms is supposed
to help: Obscuring the computational properties of models (Hummel & Holyoak, 1997,
2003; Doumas et al., 2008; see also Rogers & McClelland, 2004; Goodman, Tenenbaum,
Feldman, & Griffiths, 2008) simply obscures the conceptual confusions they embody.
Ultimately, the only real option is to peel away some more onion skin, because none of the
above can substitute for conceptual analysis.

If we are to improve the quality of our conceptual analyses of language and cognition, it
is essential that we first improve our understanding of the strengths and weakness and
compatibilities and incompatibilities of different paradigms and methods for computation.
Much like the imaginary spreadsheet, it is likely that many of the assumptions and intuitions
that inform our current understanding of the mind will never quite add up. Computational
metaphors may be our best tools for isolating cherished but flawed ideas about mental pro-
cesses, and clarifying our intuitive confusions. The challenge is deciding which metaphor
works best.
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